General filter theory:

Normalized and real filters:

Normalized filters have cut-off pulsation $\omega_c=1$ rad/s at -3dB and impedance $Z_c=1\Omega$. The following equations allow de-normalizing filters to a given frequency and to a given impedance.

Frequency de-normalization:

$$C' = \frac{C}{\omega}$$
; $L' = \frac{L}{\omega}$; $R' = R$

Impedance de-normalization:

 α

$$C'' = \frac{C}{Z} \quad ; \quad L'' = ZL' \quad ; \quad R'' = ZR'$$

Low-pass to high-pass transformation:

To transform a normalized low-pass filter into a normalized high-pass filter ($\omega_c=1$ rad/s at -3dB and $Z_c=1\Omega$) just replace every capacitor with an inductance, and every inductance with a capacitor, using the equations below.

$$C_{hp} = \frac{1}{L_{lp}}$$
; $L_{hp} = \frac{1}{C_{lp}}$; $R_{hp} = R_{lp}$

Normalized low-pass filter.

Butterworth normalized filter:

Ν	C1	L2	C3	L4	C5	L6	C7
Ν	L1	C2	L3	C4	L5	C6	L7
2	1.414	1.414					
3	1.000	2.000	1.000				
4	0.765	1.848	1.848	0.765			
5	0.618	1.618	2.000	1.618	0.618		
6	0.518	1.414	1.932	1.932	1.414	0.518	
7	0.445	1.247	1.802	2.000	1.802	1.247	0.518